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Abstract—The development of the velocity, temperature and the concentration profiles in the vicinity
of the trailing edge is investigated under the boundary layer approximation for an arbitrary initial
temperature profile and an arbitrary value of the parameter B for the chemical kinetics.

A series solution is constructed in terms of a system of ““universal functions”, from which the initial
development of an arbitrary initial temperature profile can be calculated with or without chemical
reaction. The first three terms in the series for the temperature have been tabulated previously and are
presented here in a diagram.

In the case of no chemical reaction, the analytical results for a given initial temperature distribution
predict that the temperature gradient normal to the dividing stream line tends to increase for a limited
distance in the downstream direction. This may not be anticipated from the consideration of thermal
diffusion alone. Experimental results confirm this qualitative trend. With the three terms in the series
solution for the temperature, the agreement between the analytical and the experimental results
appears also quite satisfactory.

The analytical results will enable us to calculate the development of the temperature field with

chemical reaction. There are as yet no experimental data for comparison.

Résumé—Le développement des profils de concentration, de température et de vitesse, au voisinage
du bord de fuite, est étudié a partir d’'une approximation de la couche limite pour un profil de
température initial arbitraire et une valeur arbitraire du paramétre B de cinétique chimique.

Une solution en forme de série est donnée en fonction d’un systéme de “fonctions universelles™ a
partir de laquelle on peut calculer le développement d’un profil de température initial, avec ou sans
réaction chimique. Pour la température, les trois premiers termes de la série ont été tabulés précédem-
ment et sont présentés ici sous forme de diagramme.

Dans le cas ou il n'y a pas de réaction chimique, les résultats analytiques, trouvés pour une
distribution de température initiale, font prévoir un accroissement du gradient de température normal
a la ligne de courant, a partir d’une certaine distance dans la direction aval. Ceci ne peut pas s’expliquer
uniquement par la diffusion thermique. Les résultats expérimentaux confirment cette tendance
qualitative. Avec trois termes de la série solution pour la température, I'accord entre résultats analy-
tiques et expérimentaux semble tout a fait satisfaisant.

Les résultats analytiques nous permettent de calculer le développement du champ de température
en présence de réaction chimique. Il n'y a pas encore de données expérimentales pour les comparer.

Zusammenfassung—In dieser Arbeit wird die Entwicklung der Profile der Geschwindigkeit, der
Temperatur und der Konzentration in der Nihe der Anstromkante untersucht, wobei die Ndherungen
der Grenzschichtlehre sowie beliebige anfingliche Temperaturprofile und Werte fiir die Konstante B
der chemischen Kinetik angenommen werden.

Es wird eine Reihenldsung in Ausdriicken eines Systems ‘‘universeller Funktionen’ aufgestellt, von
der aus die anfingliche Entwicklung eines willkiirlichen anfénglichen Temperaturprofiles mit oder
ohne chemische Reaktion berechnet werden kann. Die ersten drei Ausdriicke in den Reihen fiir die
Temperatur wurden schon frither tabellarisch angegeben und sind hier in einem Diagramm
mitgeteilt.

Fiir den Fall ohne chemische Reaktion zeigt das analytische Ergebnis fiir eine gegebene anfangliche
Temperaturverteilung, dass der Temperaturgradient normal zur trennenden Stromlinie ansteigt
fiir eine begrenzte Entfernung in Strémungsrichtung, was allein aus Betrachtungen tiber die Wirme

*m'rl;his research is carried out as part of the work sponsored by the Office of Ordnance Research, U.S. Army
under Contract No. OOR DA-36 ORD 2183.
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ausbreitung nicht vorauszusehen war. Experimentelle Ergebnisse bestdtigen qualitativ diesen
Verlauf. Auch die drei Ausdriicke in der Reihenldsung fiir die Temperatur stimmen befriedigend mit
dem Versuch iiberein.
Die analytischen Ergebnisse ermoglichen es, die Entwicklung des Temperaturfeldes mit chemischer
Reaktion zu berechnen. Experimentelle Daten zum Vergleich liegen noch nicht vor.

Annotamnn—Uccneayerca passutue pollefl CROPOCTH, TeMIePAaTypPH M KOHUEHTPALUH
BOIMBK 3aHEl KPOMKH CeapaToPAa IPY YCAOBHM ANIPOKCHMALIMY HAYAIBLHOTO pacnpegele s
TeMIepaTypsl B MOTPAHNYHOM CJI0€ 1 MPOMBBOJIBHOM BEIMUNHE TapaMerpa B, xapaxrepusyro-
ET0 XHMUUECKYIO KUHEeTHKY.

Pemenne nonyueno B BUAe PARA, COCTOANIEre M3 WIEHOB CHCTEMBI «YHHBEPCAIBHBIX
QyHKOu», ¢ TOMOMBI KOTOPOTO MOKHO BEMHCINTD Pa3BUTHE MPOU3BOJLHOTO TEMNEPATYp-
HOTO PACTIpeNesIeHHs 1PN HATHYNHN XnuMHUYecKo} peakuun uiau Ges Heé. Ileprle Tpm uieHa
PARA B pelleHMN A TeMIepaTypHOTO MOJA OuIu Taly:IMpPOBAHBl paHee M IPeNCTABIEHHI
37eCh HA AUATPAMMeE.

Tlpm OTCYTCTBHH XHMMUYECKON peaKIuH QHAJIHTHYeCKHe De3YIpTATH JJId JaHHOTO
HAYaJbHOTO TeMIePATYPHOTO pacnpefelieHHA HOKASHBAIOT, YTO TeMIEPATYDHSBI FPaIueHt,
MepIeHINKYJIAPHBI K JMHIK, PA3AEJAME! IIOTOKH, CTPEMUTCA YBEJNIYMTHCA HA OTPAHU-
YeHHOM PACCTOAHMM IO HANPABIEHMIO IOTOKA. DTOTO Helb3A OBLI0 ObI GKUARTH, HCXOIS
3 PACCMOTPERNA TOJNHKO TepMOAUdHY3HH.

DHCHEPUMEHTANBHEE J[IaHHBIE TOITBEDPKIAIT HTOT KAYECTBEHHBI PBHBONL. AHaauTH-
YeCKHe M SKCIEPUMEHTAJNbHEIE Pe3yIbTaThl TAKMKE BNIOJHE YAOBIETBOPUTEIBHO COTVIACYIOTCH
TIA PelleHysA, OTPAHUYEHHOTO TPEeMH YIeHAMM.

AHaJurnyecKue pesynbTaThl MOBBOJAT BHYHCJIUTH PA3BHTME TEMIEPATYPHOrO MOJA MPH
HaJANuMH XHMuEYeckol pearnuu. IToxa emeé HeT HKCIEPHMEHTATPHEIX AAHHEIX 1A CPABHOHHUA.
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I. INTRODUCTION
IGNiTION and combustion in the laminar
mixing zone between a hot stream consisting of
combustion products and a cool, combustible
stream was first treated by Marble and Adamson
{11 and continued by Dooley [6]. They con-
sidered a mnon-viscous, perfectly insulating,
semi-infinite partition separating a cool com-
bustible mixture from its hot combustion
products. The velocity, temperature and con-
centration of combustible are assumed uniform
in each half plane at the trailing edge of the
partition. Their analysis gives the distribution of
the temperature, the concentration of the com-
bustible and the gas velocity in the neighbor-
hood of the trailing edge of the partition. Their
results indicate that a local maximum in the
temperature profile first occurs, due to heat
releasc by the chemical reaction, in the hot
burned gas below the dividing stream line. The
problem was reconsidered by Cheng and
Kovitz in 1957 [2] to take into account the
finite length of the partition and the viscosity
of the gas. The initial velocity distribution is
taken to be the Blasius flow over a flat plate, but
the temperature of each stream is still taken as
uniform and discontinuous across the thin
partition. The results indicate that the develop-
ment of the temperature and the velocity field is

shortened by an order of magnitude as com-
pared with the results of Marble and Adamson.

The key interest of the problem is to obtain an
estimate of the distance of the local temperature
maximum downstream of the trailing edge.
This distance serves to represent the major
coupling between the chemical kinetic and the
fluid mechanical aspects in the problem of flame
stabilization on a solid body [3]. In any practical
system, heat transfer across the partition will
give rise to a continuous temperature profile at
the trailing edge. The heat transfer, prior to mass
and momentum mixing in the wake may
adversely affect the rate of chemical reaction and
the associated phenomena as is clear from the
discussions in [3].

The effect of a nonuniform, continuous initial
temperature profile on the development of the
wake of a combustible mixture will be con-
sidered in the present investigation.

The results of the present analysis brings out
an interesting aspect of the heat transfer in a
viscous wake layer. This is produced by the
convective motion, normal to the partition, of
the gases with nonuniform initial temperature
profiles. The temperature gradient, normal to the
partition, appears to increase in the down-
stream direction from the trailing edge of the
partition for some limited extent. This prediction
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from the analysis compares favorably with
experimental results.

II. FORMULATION OF THE PROBLEM

The governing equations are the conservation
laws of mass, momentum, energy and the
concentration of the combustible. Subject to the
appropriate assumptions [2], the Howarth
transformation is employed to uncouple the
continuity and the momentum equations from
the energy and the diffusion equations. The
momentum equation is then reduced to the
incompressible form. In terms of the trans-
formed variables the governing equations can
be written as

} M

u, +v, =0

1 a

Pﬁyy+BKexp( 9) l
@

Uy + Dl = Uyy

ub, -+ vl,
1 f,

uK, + vK, = ﬁ;Kyu — CK exp (—— —g)
where Prandtl number Pr = C,A/k and Schmidt
number S¢ = p/pD are assumed to be constant
throughout the field. The following notations
are adopted from [2].

B = 4l4H[ury C,T1x

C = 4lluzr
H = heat released per unit mass of com-
bustible

== characteristic chemical time constant

-

R = universal gas constant

A = activation energy

K ==relative mass concentration of com-
bustible

Tyi= heat stream temperature

8 =T/Tx

8, = A/RT11

u and v are non-dimensional axial and trans-
verse velocity components in the incompressible
plane, while x, y, are the correspondmg non-
dimensional co-ordinates with the origin at the
trailing edge of the flat plate.

The solution for u and v from equations (1)
was given by Goldstein [4] for the case of flow
near the trailing edge of a flat plate with sym-
metric Blasius profile at the beginning of mixing.
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With £ = yt8 g =y3¢

The solution consists of two forms—one valid
for y small and one for y large. For small y:

o )
u = § X by E1 |
=0 |
m P
v=13% T Cy— &1 J
=0

byiq :'f;;l("l); Cap—y = Wf;k(’?) -
— 3k + 2) farlm)

The functions fy, f5, fs, and their derivatives
have been recalculated for smaller mesh size in
[5] and are used in the present calculation.

Let the initial temperature profile be expressed
in the power series form, for small y and 7 in the
lower and the upper half plane respectively.

Fy) = i e (3)

The solution for 6(&%) will be constructed
separately in the upper and lower half-planes.
For small y, solutions of the forms

o0

Fo->a(L) @

7=

o m) = 0O, KE1) = SKmE (©5)

are assumed in each plane. Terms of the type
& In € will be introduced before the £ term
whenever necessary.

The following limiting process is valid

fim Z B,(m)E >

provided the limiting values

7(77)

0(

ﬁ()

r(’?)

lim =By, limy-—- =B, )

exist for each 87 and 0,;

where
lim = §{—>0 5> y=const
lim,=£¢—->0 § >0 J = const

The constant 8,, B, will be considered as given
but will not be specified for the present analysis.
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They will be determined from an experimentally
measured initial profile.
The initial conditions for the concentration
are
Hm, K{(€.m) >0, IimR(¢£.9)~>1 (D
therefore
limy Ko(§ . m) >0, lim Ky(¢. 7)1 }(S)
limy K,(¢ . n)/n, = limy K (¢ . 7)/7,— 0
when 8, is rather close to unity, the equation (4)
for the initial temperature profile may be
suitable for the expansion of the exponential
terms in equation (2). (See Appendix A.) The
results are summarized as follows

o0

aw(=5) =D pwe O

where =

D(,—exp( ﬂo) ]
b= (g + ) oo (= )

Da = {(ﬂ +B§2 aﬁfs+§?§z‘4)+ p O
(o= Tre)

+ (o= () (5o (52

when S, is not close to unity, the series (9a) fails
to be adequate since only three terms have been
carried out for the solution of 6. An alternate
expansion of the exponential term should be
used. The series has the same form as equation
(9) except that D, D,, D,, are now different from
those in (9a). The new coefficients are

8, )
DD = exp (-— FIE)

8.6, 8,
D, = (F 3 @ + 30‘1")) €xp ( Fm)

{
b fog [(fe _ 81). 18 ©b)
2 = “M[(i@*ﬁa)ﬁ@ +
f,
+3“10aF 217+3a21)}exp( Fm) ]
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where
0, , )
g = 1~ F_mz Fm' dm +
19, ., 2Fm? 8. Fm" S
3Fe \F™ = T T Fm2) "
6, , 8,
a,:WFm Fm 2(Fm - r (9¢c)
_ 2Fm® 0, Fm" 5
Fm T E )
19, o 2Fm® 8, Fm'®
% =3 Emt P )|

Substituting (3), (4) and (9) into (2), and equating
the coefficients of like powers of ¢, we obtain a
series of ordinary differential equations for
8,(n) and K.(5) as were in [2].

The equations #,(r = 0, 1, 2, 3, 4), and
K.(r = 0, 1, 2) are given as follows

1 X4 ’
_'ﬁ}:eo +2f00(;:0
]' " i r 13
5O 28— f8,=0
1 r? ! I
503 + 2108, — 21,0, = —9BDK,
l F7 1 £
500+ 2100, — 31,6, = - (10)
- 9B(D0K1 + -DlKl)) - 5f3 0;

I FF 7 r
}_);94 +2](‘0‘94 ""4fo 042“9B(D0K2+

+ D;Kg) — 5f5 0,4 10, + 1 6,
I 7 ¥
F;ﬁ‘ +2f094”‘4f09¢=0

o

1 (44 ! )
oK)+ 20K, =0
1 rr t is
.§EK1 + 2foK; — foKy =0 > (11)

1 1 L4 '
50 Ko+ 2/0Kz — 2Ky = 9CDoK,
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III, INTEGRATION OF ¢ AND K FOR SMALL y

The solution of the differential equations will,
in general, depend on the imposed boundary
conditions and the governing equation itself.
For purposes of practical application of the
solution to this problem for a given set of
physical quantities and initial conditions, it is
desirable to split the equation in several parts so
that the individual equation can be freed from
any arbitrary constants by suitable scale trans-
formations. Such a splitting is permissible,
since the equations for 6, and K, are linear. A
complete solution can then be obtained by
summing up the split equations.

(1) The splitting of the solution

There are no physical constants appearing in
the homogeneous part of the differential equation
except the Prandtl number and the Schmidt
number which were assumed to be 0-75 and 1-00
respectively. The value of 0-75 assumed for the
Prandtl number is based on the properties of
CO, at high temperature. The Schmidt number
is chosen according to the data of ethylene
oxide and CO,, the two components that will be
used in the experiment. The homogeneous
solution is split into two linearly independent
solutions. Each solution is associated with an
undetermined constant. The canonical boundary
condition is assigned at » = 0, for each homo-
geneous solution. When the equation is non-
homogeneous, the forcing function is split into
several parts, in such a way that any physical
constant, which appears in either part may be
adsorbedintheappropriate scale transformations.
Proper boundary values are assigned at n = 0,
so that the numerical calculation will not lead
to trivial solution.

Each split equation is then integrated
separately with the given boundary value at
n = 0, the integration process stops whenever
each split equation reaches a substantially
stable asymptotic region. The numerical values
are tabulated in [7] and given graphically as
Fig. 1. The process of splitting requires that an
inordinately large number of independent solu-
tions be integrated. For example, 8,, 6,, requires
6 integrations and 8,, 8,, requires 24 independent
integrations. Only the integrations of 6;, 6, and
0, have been carried out. Therefore, the present

S. 1. CHENG and H. H. CHIU
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Fi1G. 1b. Derivative curve of universal temperature

function.
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solution cannot be extended to large values of
x and y.

(2) Determination of the constants

After each split solution is integrated, all the
solutions are summed to construct a complete
solution to a given physical problem.

There are four constants to be determined for
each pair of 8,, §,. Thus four boundary conditions
are required, ie., those at # = § = 0 and
n = 7 = co. The condition that the temperature
profile be smooth at any value of £ requires that
both the function and its first derivative be
continuous at » = 0. At n = co, the temperature
profile must approach the initial profile as a
limit. This requires that equations {6) must be
satisfied for all #,’s. The asymptotic behaviors
of 0, and K,, as specified by the differential
equations are compatible with those specified in
equations (6). The asymptotic behavior of the
solution also serves to indicate the cut off point
of the numerical integration. The investigation of
the asymptotic behavior of 8,, (r =0, 1,2, 3,4} is
presented in Appendix B, and the results are
tabulated in Table 1.

Table 1. Asympiotic behaviour of 9.

r I B;gg'. 01(1153-
0 0 7)‘%
1 0 7
P

2 7;? exp (—~ 3 ﬂi) 7% o

_ P
3 7% exp (-— 3 n?) ] UH
4 78 Lot 7 Ing
4 0 7t

Where I is the forcing functions appeared in
equation (10). 82, is the asymptotic behavior
of homogeneous solution while ) is that of
inhomogeneous solution with n, = 7 - 0-3408.

The asymptotic behavior of 8, is 5! In 7,
therefore 8, must include a term like £2 In £.

Since the integrations have been carried out
only to r = 3, the logarithmic term does not
appear in the present expansion.

T
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Numerical results for 6,, 6, 6, and 8; are
tabulated in [7] for Pr = 0-75 and S¢ == 1-0.

The governing equations of K, and K] as well
as their boundary conditions are identical to
those in [2] and the solutions are applicable to
the present analysis. Since K, does not appear in
the governing equations for 8, 6,, 6,, 8,, it has
not been integrated.

(3) The splitting of 0,

For illustrative purposes, the method of
splitting and the determination of the constants
will be given for the case of §,. The equation for
f,, as given in equation (10) is invariant under
the scale transformation,

0, =p,0,and §, = B, @1

where B, = — B, for the upper and the lower
half plane respectively.

We split each of @, and @, into two indepen-
dent solutions ¢y, and ¢y, respectively

0, = Ay pu + A
gl = Ay ¢n + 1312 P12 } (12)
50 that
Lign=0, Lig; =0 (13)
where
L1=-q~ + 2Pr f, El——*Prf' (14)
dn? dy 0

Subject to the canonical initial conditions

eu0) =0 )  @u0) =1
991'1(0) =1 j’ @1’2(0) =0 } (15)

_ The four unknown constants, 4;;, 45, Ay and
A, are to be determined by

(1) the initial conditions as given in equations
(6) and

(2) the smooth matching of the function, and
the first derivatives at = 7 = 0, i.e.

Bl @1(0) = 31@1(0) (16)
B, ©,0) = —P, 6,(0) (17
These conditions of continuity require

Ay=4,; and A, = —4,. The case of
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Table 2(a). The split solution (when B, is close to unity)
0, = Nr Ari gri + Nrp Arpi grp;
r i | N A ‘ o©® | @)
| ) , —
1 B Cy ’ 0 j 1
1 2 By | 0 0 10
2 1 1 © {(Bat+ By) — Npy (Coyy + Copg)}/2Cy | 1 i 0
2 2 1 [ {(Be = B — Ny (Copyp — Cap)}/2Cs o ! 1
4, '
2 p 1, —9BPresp(— 7) 1 o 0
i 0. H
8 §
2 p 2| —9BPrexp ( ﬁ“) 1 o . 0
o ;
_ |
3 1 {Ba + Ba) — Nuy [Cra (Cpn — Cags) — |
~ (Cype Caﬂ)}}?’zcal 1 | 0
3 2 | 1 {(8s — Ba) — Ny [Cy (Capy + Cipg) — !
| ~ (Capy T+ Cap0[}/2Cs, 0 : 1
a7\ 8, :
3 p 1| —9BPrexp ( ﬁo) ﬁil Cu 0
82\ faB1 |
3 p 2, —9BPrexp ( ﬁ;) ﬁo 1 0 \ 1
.
3 p 3| —oppr exp( EB) 2By § Cu o 1
o
80 Q] H
3 p 4 —9BPr exp( —) 5‘8‘ i 0 t
1] 7] B

|

1
h

In which C,, = lim ¢,./7,

>0
Subscript p indicates particular integral

Table 2(b). The split solution (when B, is not close to unity)

Nr indicates the scale multiplier for 8,
B8, the coefficient for the initial temperature profile.

| 4

r i N & ? ¢(0) | ¢’'(0)
i B Cyy 0 : I
1 2 8 0 0o
SR 1 B2+ 2 — Nap Cop)/2Cas 0o
2 2 1 (Bs — fio — Na» Can)/2Caa o0
2 F 1 [
—9BPr exp (—- FIE) o | 0 0
2 2 0 ' o | o
31 1  Bat A= Nyt Com— Now Coud2Ct 1 | 0
3 2 1 Bz — Bs — Napi Capt — Nagp C330)/2Cse 0 i 1
8, \ 6,4 !
3 p 1 | —9BPrexp (—— i ) %ﬁl Cu o 1
|
8, | |
3 p 2 | —9BPrexp ( - -me) 3a 1 0 1
3 p 3 0 0 {
3 p 4 0 0 % 1
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A = — Ay, is ruled out by the antisymmetricity
of 8, and §,. The initial conditions

i_i_lf:oal/’? > By, 7_;1_12 b7 > B = —h (18)
lead to the same result
nlifg Ay puf/n—>1 (19)
therefore
Ay = Ay = 1/lim (@y/n) (20)

>0

The integration of ¢;; was carried out up to
the point where @y /7, or @], remains essentially
constant. The numerical value of 4, or 4y is
obtained from (20). The splitting procedure for
the independent integrations, and the constants
for each split solution are tabulated in Tables 2
(a, b).

IV. RESULTS AND DISCUSSION
(1) Construction of complete solution of 0 for
small y and 7
The complete solution for 6 can be written in
the following way with all the numerical results
inserted:

-

6 = By + 170 Bugnif + {[0-280 @+
8
+ By) -+ 0:562 BPr exp (- Ii)} @y -+

+ [0-820 (B — B) — 0-900 BPr

exp (-%—E—c-’)] oy — 9BPr exp (— g(i:)

‘pzm}fz “+ {{0’270 (Bs + By — 0-0453 BPr | (21)
L

ov (1) Bt oo

)
— By) + 441 BPrexp (~ l)ﬁ@]%z —

Bo/ B
— 9BPrexp (~ g—;) 9;?1

+ %pz)}? +...

(1710 @gp +
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6 can be written in the same manner except that
all the constant 8, must be properly modified
and @y, Pap, Page, Must be replaced by ¢y
®aps> a0d @g,,. Thus the solutions for 6 and 8 can
be easily calculated at any point £, n within the
range of validity of the series. Furthermore, the
location of the initial bulge can be calculated by
substituting the asymptotic solutions of ¢,;’s.

COMBUSTION
PRODUCTS
K=0

UNINSULATED FLAT
PLATE -

COMBUSTIBLE

K=l

«

FiG. 2. Schematic of model with co-ordinate system.

(2) Case of no chemical reaction

The temperature distribution in the case of the
mixing of a heated and a cold air stream, has
been calculated for a particular initial tempera-
ture profile. The results are compared with the
experiment as shown in Figs. 3 and 4.

Fig. 3 shows the initial velocity profile with
the free stream velocity of approximately 15-2
ft/sec for both streams. (In Fig. 3 it is seen that
the velocity profile is not symmetric with respect
to the partition y = 0, as in the physical plane.

Uy
1O

2 .
y 108 6 4 2 6 2 4 6 8 10 ¥y

Fic. 3. Initial velocity profile in compressible plane.
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X X°=0
0 X4:=0.085"
N
| H i i H .
y 10 8 &6 4 6 16 ¥

Fi1G. 4. Temperature profile incompressible plane.

When the y co-ordinates are contracted, accord-
ing to the Howarth transformation, they will
reduce to approximately symmetric Blasius
profile as postulated in the analysis. The reduc-
tion of the experimental data will be given in
Appendix C.) Fig. 4 shows the temperature
distribution in the wake near the trailing edge.
The free stream temperatures of the hot and the
cold streams are 540° and 45°F respectively.

In Fig. 4 the cross represents the initial tem-
perature as measured. The solid curve is the
approximation for the initial temperature profile
on which the calculation of the downstream flow
field is based.

The circle represents the temperature
measured at different transverse positions, 0-05
in. downstream of the trailing edge. The broken
line is the corresponding temperature distribution
as calculated based on equation (21).

It is interesting to note from both the measured
and the calculated profile that the downstream
temperature is higher than the upstream tem-
perature in the hot stream side, and is lower in
the cold stream side along constant y lines when
|y|is small. As a result, the temperature profile
shows a steeper slope toward the downstream
region along the dividing stream line.

This result might be disturbing if one should
consider the change of temperature distribution
as being carried out by the diffusive process
alone as in the ideal case of mixing of two
uniform streams.

However, inside the viscous mixing region of
two uniform streams, the stream lines must
converge toward the dividing stream line
immediately downstream of the trailing edge
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of the partition. This is because the u-velocity
component parallel to the dividing stream line,
increases toward the downstream direction,
ie. dufox > 0. The equation of mass con-
tinuity then gives

ov du 1Dp
gy  ox ' p Dt

While &u/dx becomes very large, —{1/p}Dp/Dt)
is vanishingly small when the trailing edge is
approached. Hence dv/dy < 0. With ¢ = 0 at
y = 0 the transverse velocity component ¢ is
always negative. The stream lines will therefore
converge inside the viscous wake layer, at least
immediately downstream of the trailing edge.

The convergence of the stream lines on both
sides of the partition toward y = 0, upon
entering into the wake, tends to increase the
temperature gradient across the dividing stream
line y = 0. This is opposite to the effect of heat
diffusion. If the former effect predominates the
temperature gradient across the stream line will
actually increase toward the downstream region
as was found from both the calculated and the
measured results. The importance of the non-
uniform initial temperature profiles in ecach
stream in determining the temperature field in
the wake, especially near the trailing edge of the
partition, is then evident even in the absence of
chemical reaction.

(3) Case with chemical reaction

The rate of chemical reaction in the wake
region will be adversely affected because of the
Jowered effective temperature over the hot side
of the wake. However, no definite conclusion
could be made concerning the development of
the maximum in the temperature profile. The
effect of the lowered rate of chemical kinetics is
counteracted by the lower rate of heat transfer
from the hot stream to the cold stream. More-
over, the maximum temperature point developed
deeper in the hot stream when compared with
the case with step initial temperature profile. It
is difficult to visualize qualitatively how the
overall effect will be in the presence of these
opposing influences. A detailed investigation
will have to depend on the calculated results for
specific instances based on equation (21a).
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The criteria of the initial maximum in tem-
perature profile is given as [2]:

6,=120,,=0 (22)

6, and 0., are calculated from the complete
solution (21a) by substituting asymptotic
approximation in ¢,,;. The asymptotic approxi-
mation of ¢,,; are given in Appendix D. The
results are

b, =B + 3By + an x4+ 3By +

$agyxt? + agy x23) (x17%) (23)
Oon = (38 + 3By + 3 anx' Gx*®) (29
where
dop = 0'559 Bg _ 0‘%3 32 + 7
0,
-+ 0-009 BPrexp (~— m) ag
a3 = 2321 By -+ 0023 B, —
8, A
— 9BPr exp (— F-——)(S 150 -2 “’8‘ ag +
+ (5‘468)3a1) r (25
azs = 0-076 B, — 0-068 B; +
9& gaAIUSI
-+ 9BPrexp (— ?Tn) (3 043 Fm? %0 -+
+ (3'436)3(11)

-

The co-ordinates of the location with the
initial maximum in the temperature profile are
found from (22-24) as

le3 ——
{—2(agnf; — 3ayuBy) [1 ++1 — (B: ~ 36,83)
_ (@2, — 12B,a43)/ (agePs — 3apP3)%]}
(a3, — 12B4as,)
(26)
—(as x}"® -+ 2B,) @7

>

After substituting expressions (25) in equation
(26) one obtains a general formula for x}/%
which will be extremely complicated. However,
it can be expanded in power series of the small
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parameter [9BPr exp (—60,/Fm)] provided the
following assumptions are satisfied:

. az2 )33
. 211 — (BBiBs/BY1B/B d3s
(i) e At (a22 —~ 2732) <1

These are satisfied under typical conditions. For
example, for the case reported in [2] with

B =2-58 x 1013, 8, = 23-96, Fm = 0(1)

sm = 0(1)
The first terms of the expansions are
13 Bz + v/ (3B:B3) y
Xi" = 830 oy [1 + 0314 (0.8 F®) (o))}
| 0-001
X\ T 16400, [1 1 0-314 @B/ Fmd) (aofap)]]
1
X SBPrexp (— 6 JFm) 2O
331
ENE
0:003 b,

Bs -+ V(3BiBy) ]

X [1 1640 0, 1 + 0-314 (0,8,/Fm?) (apfay)
(29

when the second term in the brackets in equations
(28) and (29) is small compared to unity. y; is
approximately equal to 4/(38;/8,). a0, ete. will
then be evaluated at 8m = +/(38,/8;). By sub-
stituting these values into equations (28) and
(29) one obtains a point of the initial maximum
in temperature profile.

The increase in temperature at y;, y; due to
the chemical heat generation can be calculated
from equation (21a) as follows

46 = 0:696 [B + v/(38,8)] (3‘81)

B
8481 g oBrog]?
»—~+0[sz“—1] + ...

It is interesting to note that both x}/3, and 44,
are proportional to [B, + +/(38,8s)] which is
the second derivative of the initial temperature
profile evaluated at y = 4/(38,/8,).

{ + 0-455
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This result indicates that for larger negative
curvature at y; the greater is the distance
required to develop the temperature maximum
in agreement with physical expectations.

Typical values of 8’s and «’s have been esti-
mated from reasonable initial temperature
profiles. Both the co-ordinates (x; y.) of the
point where temperature maximum occurs are
found to be

x}® = 0-0077 y; = 0485

when the physwal constants given in [2] were
adopted Comparlson with the values of x1/* and

; given in [2] for the step initial temperature
proﬁle shows that the temperature maximum
develops considerably further away from the
dividing stream line and into the hot gas stream
when the experimental, smooth initial tempera-
ture profile is used. The temperature maximum
develops further upstream for the present case.

In conclusion, the present work presents an
analytical method for calculating the tempera-
ture field with or without chemical reactions in
the wake of a flow with nonuniform initial
temperature. The importance of the non-
uniformity of the initial temperature is illustrated
by calling to the attention that the qualitative
behavior of the immediate development of the
temperature field is opposite to what may be
expected if the nonuniformity is ignored. This
qualitative analytic prediction is confirmed by
experimental data. In view of the importance of
the temperature field on the rate of chemical
reaction, it is pertinent to emphasize the impor-
tance of the temperature nonuniformity in many
practical problems, involving chemical reaction.
A typical example is presented,
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APPENDIX A
Expansion of exp (—8,/8)
Expansion of exp (— 8,/6) about ¢ = 0,
holding y constant, can be written as:

£ +
£=0
] — 8, 8,
F g () +ariew (<l @

.
o (= o)

since
fe=
§=Fat<n—>w
|y = const

e
Hence equation (1) can be written as

g, 6,
e () = (= p) {1+ £
9, 6 1 (8.0
ve o (m-p) zs'(‘i‘il)] +
’y‘ 2 ’y 3
F=pot a3+ R (5) + P (5) -
when 8, is close to unity, the expansion of

exp (—0,/F) can be carried out about y = 0,
with y = 3én.

exp (— %,)n_exp( go)+ 1
b -2 6]
X €xp (* gi;) 72t

Béfexp( Z’;)n“f“lnf—{—...

(A2)

-+

(A3)

—

o
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Substitute (A3) into (A2) and rearrange the
result in ascending powers of £. The following
series is obtained:

aﬁl )

exp(—%’)=exp(—%)+(%n+

e (g)e+ {05+

;1%3 ") (Zﬁﬁ e H(A%)
a1 (5 (5) }

by
exp (— ﬂo) £ 4

6, + B AW
B exp( ﬁo)n§ Iné+...
When B, is substantially different from unity,
say 1/2, the above expansion cannot be used.
The expansion of exp (— §,/F) must be such as
to represent with reasonable accuracy this
function in the region of y which is important in
the development of the temperature maximum.
The method of solution of the different equation
regimes, on the other hand, exp (— 8,/F) must
be expressed in the form of power series of y.
Hence assume the following expansion

+

ga oa
exp (~ 'F) = exp (— —) (ag+ ayy +
(AS)

+apyt+..0)

ag, 0y, and a,, are so determined that the
truncated polynomial will give the same zeroth.
First and second derivatives of exp (— 6,/F) at
some important point y = ém. Hence,

ay + a,;8m + adm? = (A6)

0
a; + 2a,6m = (F#l—z) Fm’ (A7)

ﬁa Iz 200 neg 0(21 ne
2CL2——-Fn—1~§Fm —W(Fm) +F7n—4(Fm)
(A3)

From (A6), (A7) and (AS8), oy a;, a, are
calculated, finally (A2) may be written as
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Ouby
Fm®

6, 8,
exp (—— —F) = exp (-——ﬁ)l[ao + (ao

6, 6
+ 3am) £+ {% [Oa (ﬁz - ‘F—”ma) +

16,6 6,6
+ an;;] + 3G1F—m;77 + 32@2772} &+ .. ]
where
1 0 /8 0 F 17
s0=1=Fpb m+2F2(m‘"
2P 6Fm
~ Fm F2 ) "
B{t 7 0 1
2Fm'? 8, Fm'?
T Fm T Fm? om
16 (o, 2Fm 0P
2 =3 EE\"™ T TFm Fm?
APPENDIX B

Asymptotic solution of (")
The general equation for 0,(n) can be written
in the more convenient form

0;’ + A2f0071” - )\rfoler = Prl,

where
A, = rPr
ILh=L=1,=0
I, = —9BD\K,

Ia = - 9B(D0K1 + DlKD)
I, = —9B(D\K, -+ D,K) — 5f30; + f 36 +f(l,54
The formal solution for 6, can be written as

0,(n) = a, () + b f{"(n) —
— Pr {r I exp [— X, [° fo(2)dz] { /(") £{7(8) —
— () f{7H(8)} dB

where a,, b, are the arbitrary constants and
70, i), are linearly independent solutions to
the homogeneous equation. For large » Gold-
stein shows that f, behaves as quadratic func-
tion of 7
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Jo) ~ %o, (7 + 80)* + Ol(n + 8)~*

exp {— a;/3 (n + 8p°}]
Som) ~ai(n + 8y)

Using these forms for f, f,, the homogeneous
equation becomes

00 + Dy day (g + 892 0 —
— day(n + 8p) 8® =0
The solutions are

a
60 ~ Ar ;"2 exp (— 3 n?)

oc

(1 ST (5]
)
(e Y )
s S5l
e e -
oo o

where

g = L = 8, - 0-3408.

APPENDIX C
Reduction of experimental data
The velocity and temperature distribution, as
shown in Figs. 3 and 4 are obtained at planes
perpendicular to the free stream direction and
located at x = 0 and x = 005 in., respectively,
as measured from the trailing edge of the plate.
The hot air was heated by the electric heater to a
temperature of 540°F while the cold air was
observed to have a temperature of 45°F. Both
free stream velocities were 15-2 ft/sec approxi-
mately.
The temperature distribution at x = 0-05 in.
was calculated analytically on the basis of
equation (21) for a given set of values of 8,, and

S. I. CHENG and H. H. CHIU

B, whichare determined by the initial temperature
profile, in the following manner.

Firstly, the physical plane is transformed into
the incompressible plane according to the
Howarth transformation. For the constant
pressure process, the density ratio p/p1appearing
in the transformation is replaced by the tem-
perature ratio T1/T. The compressible plane is
thus transformed into the incompressible plane.
To calculate the spatial variables x = x;/4/,
¥y == /(R /41, as were defined by Goldstein, the
effective flat plate length / must be estimated.

It may be obtained on the basis of either the
formula of skin friction or of the expression of
the change of the centerline velocity given by
Goldstein {4]. The Blasius skin friction formula
is

ou

ay

/2
= (0-664 I-%,ll—
1y, =0
where Re = Reynolds number 4/ui/v, | = effec-
tive length of the flat plate, u; = free stream
velocity in the direction parallel to the plate,
y; = transverse distance co-ordinate in the
incompressible plane., With uy = 152 fi/sec,
v = 1-55 x 10~ ft¥/sec., and with

as was obtained from the velocity profiles in
the incompressible plane, / was found to be
1-30 in. Goldstein’s formula for the centerline
velocity is

u=3E 60

S0y = 3-67896, f,(0) = 3-5415, f4(0) = §-1190,
with ur = 152 ft/sec, the centerline velocity
distribution was found to fit well with that
given with / = 1-25 in. With u; = 15-7 ft/sec,
[ was found to be 0-8 in., these are shown in
Fig. 5.

In the figure circles and crosses indicate the
actual velocity distribution along the centerline
with u1 == 15-2 ft/sec and 15-7 ft/sec, respectively.
The variation of the center velocity with / == 1-25
in., 1-0 in., 0-8 in. are plotted. Weighing all the
aspects involved, we decide to take / = 10 in.
in the calculation. The initial temperature
profile in the x~y plane was approximated by
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FiG. 5. Centerline velocity profile.

cubic equations for y and 7 smoothly joined at
y = j = 0. By taking 3 points in each y and p
plane, the 6 unknown constants 8,, B, Pa Bs,
By, Ps Ps, are determined, where 8, = —f, is
imposed as the necessary condition of smooth
joining.

At xo = 0-05 in., we have y = 0:0125 and
¢ = 0-232. With the values B, . . . B; determined
from the initial temperature profile, the cor-
responding  temperature  distribution  at
xo = 0-05 in. is given by equation (21) as

6 = 0-7537 + 0-0988¢,; + 0-0119¢-,;, —
—0:0301¢y, — 0-004py;, + 0-0285p,,
6 = 0-7537 — 0-0988¢;; +- 0-0119¢y, -
+ 0:0301¢,, — 0-004¢4, — 0-0285¢,,
Here ¢’s are functions of n = y/3e. For any
given value of y, say y == 0-174 = p/3e = 0-25
the following values are obtained from Table 2(b).
g = 02436, @, = 1-1598, @, = 02503,
g5 = 1243, @gy = 0-2570

NON-UNIFORM TEMPERATURE FIELD
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Thus 8 and § were calculated to be 0-7864, and
0-7387 respectively at the point n = 5 = 0-25,

The slope of the temperature profile along the
stream line can be calculated easily by
differentiating equation (21), with respect to y.
With the present data the analytical result gave
0,/8, = 1-625. While the experimental result is
1-614 at &£ = 0-232.

APPENDIX D

Asymptotic approximation of @, ;

The asymptotic expression of ¢;,; are approxi-
mated based on the computed values of the
temperature function in [7] and are shown in the
following:

pn = 0587y + 0-200

¢ = 1-8009% + 9 + 0-580

Qo == 06109 4 0-3439 4 0193

@Yo = 00529 4 0-0287 -+ 0-019

Papz = 0-1739% 4~ 0-167y — 0-052

Ps = 1-850n® & 217092 4 0-0157 + 14620
@52 = 0-553n% 4 0-63572 +- 0-080 +- 0-370
@Q3p = 0:0959 4 2:68092 + 3-010y + 1-851
Pape = 01009 + 2:8507% — 3-3007 + 2:041
Paps = 0:10379* + 2-9304% — 2-847y 4~ 1-542
@apa = 0:10592 4 2:97992 — 2-911y + 0-650

The above approximate expressions are
justified from the point of view of the behavior
of the asymptotic solution as is given in Appen-
dix B.



